

Transforming the Process Industries through Modular Chemical Process Intensification

Ignasi Palou-Rivera, RAPID CTO

Energy & the Chemical Process Industries

- Manufacturing sector accounts for a quarter of the total US energy use
- Process industries are the largest consumers in the sector
- AMO recognized potential for MCPI
- Process industries lacked the MCPI tools, knowledge, experience, leadership, and convening body needed to transform the industry

–DOE AMO Energy Bandwidth Studies https://www.energy.gov/eere/amo/energy-analysis-data-and-reports

Shifts in Supply/Demand

Liquids demand growth

BP

External Forces Creating Pressure for Change

Increase Pressure on Operational Footprint

Singapore carbon tax would hit refiners, help renewables

REUTERS FEBRUARY 20, 2017 / 8:55 PM

Advances in Adjacent Technologies

Rise of Inexpensive Renewable Power

RAPID – Who are we?

Manufacturing USA Institute

 \$150 million, 5 year public-private partnership between DOE and AIChE

RAPID Members

87 member institutions
 47 Companies, 30 Universities,
 10 National Labs & Non-profits

RAPID Impact

- Build Community
- Drive Thought Leadership
- Educate students and professionals
- Fund and manage R&D projects

Premier

Choice

Modular Chemical Process Intensification (MCPI)

Modular Processing

- Rethinking systems to enable flexible, distributed manufacturing
- Shift from bigger is better paradigm to small, modular paradigm
- Transition from volume scaling to numbering up

Process Intensification

- Rethinking processes to dramatically improve performance
- Shift from unit operations paradigm to integrative paradigm
- Transition from batch to continuous

MCPI Taxonomy

Adapted from Stankiewicz and Moulijn, Chemical Engineering Progress, © 2000 American Institute of Chemical Engineers. Sensors, controls, automation

MCPI Opportunities

Opportunities

- Modular platforms to streamline deployment and reduce costs
- More efficient reactor and separations technology

But, technology development is needed

Critical Gaps	Potential PI/Modular Solutions
Efficient Batch to Continuous Conversion	Modular systems for scalable continuous production
Reaction Chemistry	Novel reactor designs, alternative energetics (induction, plasma, microwave, sono/electrochemistry)
Separations/Heat Transfer	Acoustic/ultrasound, enhanced membranes
Process design tools	Process synthesis and multi-scale modeling for PI equipment

Modeling the Total Cost of Ownership for Scaling-Up via MCPI

Develop real world case studies and supporting models to understand true costs to scale in number versus traditional volume scaling.

- Provide case studies to provide insight into decision rationale for using MCPI within specialty chemical and distributed chemical markets
- Compare total cost of ownership (TCO) and net present value (NPV) for MCPI and conventional "stick-built"
- Determine CAPEX and OPEX correction factors for modularization, PI and numbering up

<u>Case Study #3 - Distributed Commodity Production</u> Total Production Cost Comparison for MCPI and CSB

- Total production cost for MCPI is relatively lower up to 3 trains
- Findings align with the case study partner's deployment strategy of numbering-up to 3 trains, thereafter moving to a mid-sized or a large-sized CSB plant

Modular Platform for Continuous Manufacturing of Specialty Chemical

Modular process developed and commercialized in under 20 months with 90% lower CAPEX, >30% lower OPEX, and improved product quality.

Technology

		production process from <i>batch to continuous</i> in compact, modular processing units
	Base Case	Current manufacturing site within Lubrizol utilizing current state-of-the-art batch technology
	Model Deployment Cost Reduction	 ~80% lower capacity cost Process efficiencies Modular standardized size Much smaller equipment Equipment utilization efficiency Proven through pilot unit experience

Conversion of succinimide dispersants

Lower capital risk

- Earn into scale by numbering up
 - · Drive quality by reducing variability

Four Modular 5,000 MT/yr Continuous Systems = 20,000 MT/yr

Novel Separations

Novel Membranes for Low Energy Separations of Complex Aqueous Systems

Graphene oxide membrane for separations of high ionic strength multiphase liquids, with kraft black liquor as primary test case.

Power Ultrasound for Nonthermal, Nonequilibrium Separation of Ethanol/Water

Low energy ethanol separation from aqueous solution using power ultrasound avoiding azeotrope limitations.

Advanced Systems Modeling

SYNOPSYS – Synthesis of Operable Process Intensification Systems

Process synthesis modeling toolbox for analyzing and predicting the optimal production system for existing and new processes.

RAPID Reaction Software Ecosystem

Multiscale chemical reaction network modeling tools including physical property and reaction thermochemistry estimation to reaction network prediction and analysis.

MCPI for Reprocessing – Some Ideas

- Process Intensification (PI)
 - Technologies used in reprocessing use PI ideas already (e.g. solvent extraction)
 - Batch-to-continuous process for pyro-processing (electrochemical)
 - Combination of operations/phenomena in one unit (e.g. reactive separation)
- Modularization
 - Distributed reprocessing close to the source (reactor)
 - Minimize transportation (cost, safety, etc.)
 - Reduce regulatory burden
 - Number-up vs. scale-up
 - Module standardization and replication
- Combination of PI and Modularization
 - MCPI combines the benefits of PI and modularization
 - Combined benefits are larger than additional improvements synergistic effects

Questions?

RAPID@aiche.org

Addressing Sustainability

15 LIFE ON LAND

16 PEACE, JUSTICE AND STRONG

RAPID Metrics

